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UNSTEADY RADIATIVE–CONVECTIVE HEAT TRANSFER IN A FLOW

EMITTING-ABSORBING AND SCATTERING MEDIUM AROUND AN ABLATING PLATE

UDC 536.33N. A. Rubtsov and V. A. Sinitsyn

A conjugate problem of radiative–convective heat transfer in a turbulent high-temperature gas-disperse
flow around a thermally thin ablating plate is considered. The plate experiences intense radiative
heating by an external source, which is a blackbody. The temperature fields and the distributions of
heat fluxes along the plate under unsteady conditions are calculated. The data gained make it possible
to examine the effect of the Stark number and phase-transition heat in the plate material on the time
evolution of the thermal state of the boundary-layer medium and the plate itself being heated by a
high-temperature radiation source.
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Radiative–convective heat transfer on a porous plate with blowing was considered previously [1–3]. The
mass flux injected into the flow was independent of the plate temperature and was set a priori.

Mass supply into the boundary layer through the surface interrelated with heat transfer is studied in the
present paper on the basis of the ablating-plate model.

We consider a conjugate problem of radiative–convective heat transfer in a turbulent flow of an emitting-
absorbing and scattering gas-disperse medium around a thermally thin ablating plate. For simplicity, we assume
that the plate-material vapor does not affect the optical and thermophysical properties of the medium. Next, we
assume that the particles present in the flow have no effect on the thermophysical properties of the medium but
determine its optical properties. In the course of the heat-transfer process, the particle size remains unchanged. The
optical properties of the medium depend on temperature and radiation wavelength. The heat capacity is assumed
to be constant; the viscosity and thermal conductivity are linear functions of temperature and the density varies
reciprocally to temperature. Radiation transfer along the plate is ignored. The boundary-layer heating time is
assumed to be much shorter that the plate heating time; for this reason, the boundary-layer heat transfer can be
treated in a quasi-steady approximation. The initial plate temperature is Tw0; over the length 0 < x < x0, the
temperature is maintained constant throughout the whole heating process. The lower surface and the trailing edge
of the plate are thermally insulated. The source of radiation, which is a blackbody with a temperature Ts, is located
outside the boundary layer. We consider radiation in a restricted spectral range ∆, where the medium absorbs and
scatters radiation. The emitting surface of the source is parallel to the plate.

The thermal state of the plate is governed by an unsteady heat conduction equation, and boundary-layer
heat transfer is described by a well-known set of equations including the continuity equation, the equation of motion,
and the energy equation.

With the adopted assumptions, the dynamic problem reduces to the solution of the differential equation
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with the boundary conditions

η = 0: f = 0, f ′ = −fw, η →∞: f ′ → 1.
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Here f is the dimensionless stream function, fw = Vw(Re ξ)1/2, Vw = ρwvw/(ρ∞u∞) is the dimensionless surface
mass flux defined below, the subscripts w and ∞ refer to the conditions at the plate and in the free flow,
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µ∞x
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y∫

0

ρ

ρ∞
dy and ξ = x/L

are the transverse and streamwise dimensionless coordinates, x and y are the corresponding dimensional coordinates,
u is the longitudinal velocity, ρ is the density, µ is the viscosity, L is the calculation length of the plate, and
Re = ρ∞u∞L/µ∞ is the Reynolds number; the prime denotes differentiation with respect to η.

The thermal problem consists of equations and boundary conditions for heat transfer:
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in the plate. Here and below, µ̄t = µt/µ (µt is the turbulent viscosity), θ = T/T∞ is the dimensionless temperature,
θ0(η) is the self-similar solution of the energy equation (2) without radiation, æ = λ∞L/(λcH) is the conjugation
parameter, H is the plate thickness, Fo = act/L2, Pr = µ∞/(ρ∞a∞), and Sk = 4σT 3

∞L/λ∞ are the Fourier number,
Prandtl number, and Stark number, respectively, Prt is the turbulent Prandtl number, λc and λ∞ are the thermal
conductivities of the plate material and the medium in the free-stream flow, respectively, ac and a∞ are the thermal
diffusivities of the plate material and of the free-stream flow, ξ0 = x0/L, ξ1 = x1/L, x0 and x1 are the boundaries
of the calculation length of the plate, and σ is the Stefan–Boltzmann constant.

The dimensionless total heat-flux density on the plate Qw in Eq. (3) is determined by the formula
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where Φw = Ew/(4σT 4
∞) (Ew is the integral total flux density of radiation on the plate) and QL = qL/(ρ∞cpT∞)

(qL is the evaporation heat of the plate material).
The expression for the dimensionless divergence of the radiative flux density in Eq. (2) has the form
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where E0λ(T ) = 2πhc2/[λ5(exp (hc/(kλT ))−1)] is the blackbody radiation flux density, E∗λ = 2π

1∫
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the volume density of the incident radiation flux, Iλ is the intensity, χ is the cosine of the angle between the ordinate
axis and the direction of radiation propagation, λ is the wavelength, c is the speed of light in vacuum, h and k are
the Planck and Boltzmann constants, respectively, τλL = kλL is the characteristic optical thickness, and kλ is the
attenuation factor of the medium; the subscript λ refers to spectral quantities. Integration over the wavelength in
Eq. (4) is performed throughout the spectral range ∆, in which the medium absorbs and scatters radiation. The
optical thickness in the boundary-layer cross section ξ is a function of wavelength and temperature given by the

formula τλ =
( ξ
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The radiative heat transfer in the system under study, which is a plane layer of an emitting-absorbing and
scattering medium confined between the source and plate surfaces, is governed by the radiation-transfer equation.
To solve this equation, the method of average fluxes is used [4]. The velocity field in the turbulent boundary layer
is calculated by the double-layer Cebeci–Smith model [5].
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Since the sought quantity (plate temperature) enters the boundary conditions for Eqs. (1) and (2), Eqs. (1)
and (3) were solved together with the radiation-transfer equation by consecutive refinement of the plate temperature;
Eq. (1) was integrated by the iteration-difference method [6].

The medium under study was a mixture of gaseous carbon dioxide, water vapor, and solid particles. The
solid phase was coal and ash particles. With such a mixture, the steam boiler furnace atmosphere can be modeled
to a certain extent.

Scattering in the gas phase being neglected, the attenuation factor of the model medium can be written as

kλ = kλp + kλg,

where kλp is the attenuation factor of the particle cloud and kλg is the absorption factor of the gas.
To make allowance for selective absorption of radiation in the gas phase, we use the narrow-band method

based on the Goody statistical model [7]. The Goody model implies that the absorption lines are randomly
distributed in the frequency spectrum, and their intensities are distributed according to some (most frequently,
exponential) law. Within the framework of this method, the spectral absorption coefficient under moderate pressures
can be represented as

kλg = P (γλCO2CCO2 + γλH2OCH2O),

where P is the total gas pressure, C are the molar concentrations of the components in the mixture, and γλH2O and
γλCO2 are the average intensities of individual lines in the absorption band of water vapor and carbon dioxide.

The band parameter γλ is temperature-dependent. In the present study, we used the values of this parameter
in the temperature range of 300–1500 K; these values were borrowed from [8–10]. To calculate radiation transfer,
the bands of 7250, 5331, and 3755 cm−1 for H2O and the bands of 667 and 3715 cm−1 for CO2 were taken into
account.

The parameters that describe the optical properties of the particles were borrowed from [11]. Treating the
particle cloud as a polydisperse mixture with a gamma-distribution in terms of size, Kim and Lior [11] obtained
approximate formulas for attenuation and scattering factors as functions of the diffraction parameter x = πd̄/λ (d̄ is
the mean particle diameter).

Ablation of a wetted surface is known as substance entrainment into the boundary-layer flow due to phase
transitions (melting, evaporation), mechanical erosion, thermal destruction, etc. In the present work, we believe that
evaporation is the governing process. Evaporation is assumed to be essentially nonequilibrium, the saturated-vapor
pressure in the flow being much lower than the saturation pressure at any surface temperature. Such a situation is
typical of high-velocity flows. Experimental studies of evaporation of many materials showed that the vapor mass
flux as a function of plate temperature can be represented by the Langmuir–Knudsen law for evaporation under
essentially nonequilibrium conditions [12]:
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)
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Here, a1 and a2 are coefficients independent of plate temperature:
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In the above formulas, a is the accommodation coefficient, Psat is the saturated-vapor pressure, M is the molecular
weight of the vapor, and R is the gas constant. The values of a1 and a2 for various materials range widely.

The results described below were obtained for a free-stream temperature T∞ = 1000 K, source temperature
Ts = 1500 K, dimensionless source temperature θs = Ts/T∞ = 1.5, a1 = 10−3, and a2 = 10−2. The computations
were performed for the following values of the governing parameters: θw0 = 0.3, Pr = 0.7, Prt = 0.9, and Re = 106.
The emissivity of the plate surface was assumed to equal 0.99. It was also assumed that CCO2 = 0 and CH2O = 1.
The total gas pressure was P = 1 atm and the conjugation factor was æ = 1; the solid particles in the flow were
coal particles available in a concentration of 2 · 10−7 m−3, and their mean diameter was 10−4 m.

The calculations showed that, for the indicated concentration of particles in the flow, the contribution of
the gas phase into radiation transfer is insignificant. The latter is explained by discreteness of the gas-absorption
spectrum and by a small boundary-layer thickness.

Figure 1 shows the distributions of the temperature θw along the plate under steady conditions for various
values of the radiative–convective Stark criterion (Sk) and the parameter QL, which characterizes the intensity of
heat absorption during the phase transition. Curves 3 in Fig. 1 for different values of QL are coincident. A higher
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Fig. 1. Temperature distribution along the plate under steady conditions for Sk = 102 (1), 104 (2),
and 106 (3): the dashed and solid curves refer to QL = 0 and 0.4, respectively.

Fig. 2. Temperature distribution in the boundary-layer cross section ξ = ξ1 under steady conditions
(notation the same as in Fig. 1).

level of temperatures corresponds to higher Stark numbers. The reason for this behavior of the temperature field is
as follows. If the value of Sk is high, the major part in the heat exchange between the plate and the flow belongs to
radiation. Under steady conditions, an intense flux of radiation from the plate is necessary to compensate for the
radiation flux incident onto the plate from an external high-temperature field of radiation. This can only be achieved
by plate heating. The calculation data show that an increase in the parameter QL results in plate-temperature
reduction because the amount of heat absorbed during the phase transition increases. Here, stratification of the
curves according to the parameter QL depends on the Stark number. At low values of Sk, the stratification is more
pronounced, which can be explained by the fact that heat conduction appreciably affects heat transfer near the
plate surface.

Figure 2 shows the distribution of the boundary-layer temperature θ in the last cross section over the
coordinate ξ under steady conditions. The presence of an external source of radiation at high values of Sk leads
to an appreciable overheating of the boundary layer in the vicinity of the wetted surface. At low values of Sk, the
influence of the external source and heat absorption due to the plate-surface phase transition on temperature is
manifested weakly. For Sk = 100 and QL = 0, the external source of radiation gives rise to an isothermal (across the
boundary layer) state. The same tendencies in the temperature curves are observed during variation of the Stark
number and parameter QL. For intense radiative heat transfer (high values of Sk), the effect of heat absorption due
to the phase transition on the boundary-layer temperature field under steady conditions is insignificant.

The performed computations make it possible to reveal the effect of heat absorption due to the phase
transition on the distributions of heat fluxes along the plate. Figure 3 shows the total radiation flux density Φw

versus QL at various times. Here, the dimensionless time (Fourier number) step is ∆Fo = 2.5 · 10−5. Curves 1 for
different values of QL coincide. First of all, a decrease in the radiation flux with establishing steady conditions is
worth noting. The reason is that the radiation emitted by the plate compensates for the incident radiation flux
to a greater extent as the plate is heated. With increasing QL, the magnitude of Φw also increases. The latter
is explained by the fact that the heat absorption due to the phase transition results in plate cooling and, hence,
in reduced compensation of the incident radiation flux by the effective emission from the plate. Under steady
conditions, this effect is manifested weaker.

Figure 4 shows the distributions of the total heat-flux density Qw over the plate for different values of QL.
The dimensionless time step is ∆Fo = 5 · 10−5. In the steady regime, the curves for different values of QL coincide.
The ablation process is seen to exert the most pronounced influence on Qw at the initial stage of heating, when the
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Fig. 3. Effect of the parameter QL on the time evolution of the distribution of the total radiation
flux density Φw over the plate: the dashed and solid curves refer to QL = 0 and 0.4; the calculation
data were obtained for five time steps (1), for ten time steps (2), and in the steady regime (3).

Fig. 4. Effect of the parameter QL on the time evolution of the distribution of the total flux Qw

over the plate (notation the same as in Fig. 3).

plate-temperature distribution is strongly nonisothermal. Extreme regions are observed, where the total flux Qw is
minimal.

A preliminary analysis shows that the model proposed allows one to investigate the main features of
boundary-layer heat- and mass-transfer processes in a flow of a high-temperature gas-disperse medium with an
external source of radiation over a flat surface.
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